New product
standard by ASTM International, 11/01/2017
Warning: Last items in stock!
Availability date:
1.1This test method covers the determination of the compressive strength of soil-cement using molded cylinders as test specimens.
1.2Two alternative procedures are provided as follows:
1.2.1Method A-This procedure uses a test specimen prepared in a mold complying with Test Methods D698 (4.0 in. (101.6 mm) in diameter and 4.6 in. (116.8 mm) in height), sometimes referred to as a proctor mold, resulting in a height over diameter ratio of 1.15. This test method may be used only on materials with 30% or less retained on the 19.0-mm (/4-in.) sieve. See Note 2.
1.2.2Method B-This procedure uses a test specimen with a height over diameter ratio of 2.0 prepared in a cylindrical mold in accordance with Practice D1632 (2.8 in. (71.1 mm) in diameter and 9.0 in. (229 mm) in height). This test method is applicable to those materials that pass the 4.75-mm (No. 4) sieve.
1.3Units-The values stated in inch-pound units are to be regarded as standard, except as noted in below. The values given in parentheses are mathematical conversions to SI units, and are provided for information only and are not considered standard. Sieve sizes are identified by the standard designations in Specification E11. The alternative sieve size designation given in parentheses is for information only and does not represent a different standard sieve size.
1.3.1The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.
1.3.2The slug unit of mass is almost never used in commercial practice, that is, density, balances, etc. Therefore, the standard unit for mass in this standard is either kilogram (kg) or gram (g), or both. Also, the equivalent inch-pound unit (slug) is not given/presented in parentheses.
1.3.3It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales, recording pounds of mass (lbm) or recording density in lbm/ft shall not be regarded as nonconformance with this standard.
1.4All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this test method.
1.4.1The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.
1.5This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.